2025-12-29
什么是数据采集系统(DAQ)?
本文将系统说明数据采集系统(DAQ)的类型、组成与选型要点:传感器、信号调理、ADC、接口与软件;重点解释采样率、动态范围、抗混叠和多通道同步,并给出通道数预留、量程匹配、本底噪声与软件工作流等实用建议,帮助工程师更快搭建可重复、可追溯的测试方案。
为什么数据采集系统如此重要
温度、声音、振动……这些物理刺激一直在我们周围发生。你可以把人体也理解成一套自带算法的采集系统:眼耳鼻舌身作为传感器负责取样,神经网络负责传输与编码,大脑把多路信息融合分析后做出决策,身体再执行动作并根据结果调整,循环往复。
工程世界要理解和优化设备,也离不开同样的过程。温度、声压、振动、应力、电压等物理量,是我们获取“客观信息”的入口;它们不仅要测得准,还要能反复复现、长期记录。更关键的是,在高温、高应力、高声压或大电流环境中,直接暴露测量可能带来安全隐患。数据采集系统的价值,就是把这些信号以更可控、更安全的方式转化为可存储、可分析的数据。

现代工程和科研几乎离不开数据采集系统,它的重要性在于它让测试和分析建立在客观准确的基础之上。在没有DAQ之前,很多产品测试依赖人工经验和主观判断:例如早年汽车悬挂的测试,工程师往往根据试车手的感受来评价悬挂性能,这种方法主观且难以量化。而有了数据采集系统后,就可以通过传感器获取客观的量化数据,用数字说话,避免了人为偏差。数据采集系统能够重复地记录各种工况下的参数,使得不同方案可以直接对比,以数学和统计方法分析差异,并通过图表清晰地呈现结果。
可以说,在当今从汽车、飞机到电子设备的开发过程中,没有数据采集就无法高效地验证产品性能、安全性和可靠性。例如在耐久性试验中,DAQ记录了载荷和应变的循环数据,用于疲劳寿命分析;在噪声控制中,通过多点同步采集振动和声压,找到噪声源及传播路径。这些都是数据采集带来的量化分析能力,为工程改进提供了科学依据。
数据采集系统的应用也深入到各个领域:
- 汽车NVH和机械振动测试:用于采集车身振动、噪声、发动机动平衡、结构模态等数据,帮助工程师改进车辆舒适性。
- 电声和音频测试:在扬声器、麦克风、耳机等音频器件的研发和生产中,DAQ用于测量频率响应、声压级、失真度等,确保这些器件的声学性能。
- 工业自动化与监测:DAQ广泛用于工厂过程监控、设备健康监测和工业控制。例如采集温度、压力、流量、扭矩等传感器数据,实现对生产过程的实时监控和异常报警,通常要求DAQ长时间可靠运行,具备高稳定性和抗干扰能力。
- 科研实验与教育:从物理、生物实验到地震监测、气象观测,数据采集系统都是科研人员获取原始数据的基本工具。它让实验数据记录自动化、数字化,方便后续处理。

在各行各业对质量和性能要求日益提高的今天,数据采集系统已经成为不可或缺的“眼睛”和“耳朵”,赋予工程师洞察复杂现象的能力。
采集前端的主要类型
根据接口形式、集成程度和应用场景的不同,数据采集卡衍生出多种类型。以下是几种常见的采集卡/采集系统类型:
| 类型 | 形态/接口 | 主要优点 | 限制 | 典型场景 |
| 插入式采集卡 | PCIe / PXI / PXIe | 低延迟;高吞吐;实时性强 | 不便携;依赖机箱/工控机;扩展受平台限制 | 固定实验室;机架系统;高带宽采集 |
| 外置式采集设备 | USB / Ethernet / Thunderbolt | 便携;部署快;适合笔记本 | 带宽/延迟受接口影响;驱动稳定性关键;供电/线缆要注意 | 外场测试;移动测量;通用采集 |
| 一体化记录仪 | 内置电池/存储/屏幕(可独立) | 开箱即用;现场操作方便;离线记录省心 | 通道/算法通常有限;扩展能力弱;后处理依赖导出 | 巡检;快速诊断;长时间离线记录 |
| 模块化分布式系统 | 主机 + 模块;网络扩展(可同步) | 信号类型按需组合;通道易扩展;同步能力强 | 规划更重要:同步/时钟/布线;规模越大越依赖系统设计 | 多物理量同步;大规模通道;跨区域测试 |
- 插入式采集卡(内置式):指安装在计算机内部的板卡,典型接口有PCI、PCIe、PXI(CompactPCI)等。这类卡直接插入PC机箱总线槽,由PC供电和控制,实时性高且带宽大,适合台式机/工控机环境下的大数据吞吐应用。但其便携性较差,通常用于固定实验室或机架系统中。

- 外置式采集设备(外置模块):通过USB、以太网、Thunderbolt等接口与电脑连接的采集硬件。常见的是USB数据采集卡,体积小巧、即插即用,非常适合笔记本电脑和现场测试。以太网/网络型DAQ则可实现远距离传输和多设备连接,外置设备一般有独立机壳,便携性好,但高端型号在实时性能上可能略受接口带宽限制(USB延迟较PCIe稍高)。

- 便携式/一体化数据记录仪:这类将数据采集硬件与嵌入式电脑、显示屏、存储等整合为一体,形成独立工作的仪器。特点是现场使用方便,无须外接PC即可完成数据的采集、记录和初步分析。例如带平板屏幕的便携式振动采集分析仪、手持式多通道记录仪等。这种设备通常针对特定应用优化了软件,开箱即用,适合需要移动测量或现场快速诊断的场合。

- 模块化分布式采集系统平台:由多个采集模块和主控制器/机箱构成,可灵活组合扩展通道数,灵活搭配不同的功能模块。每个模块负责一定类型或数量的信号通道,通过高速同步网络(如EtherCAT、以太网/PTP等)连接到主控制单元或直接连入计算机。这种架构具备极高的扩展性和分布式测量能力,可将模块放置在被测物附近减少传感器布线。例如CRYSOUND的SonoDAQ这类模块化架构,每台主机支持多个模块并可通过菊花链/星型网络扩展到上千通道。模块化系统非常适合大规模、跨区域的同步测量需求。

数据采集系统的组成
一个完整的数据采集系统通常由以下几个关键部分组成:
- 传感器:负责将物理现象转换为电信号的前端。例如,将声压转换为电压的麦克风、将振动加速度转换为电荷/电压的加速度计,将力转换为电阻变化的应变片,以及测温热电偶等;
- 信号调理:介于传感器和采集卡ADC之间,用于调整和优化信号的电子模块。其功能包括:放大/衰减(增大或减小信号幅度到ADC量程)、滤波(如抗混叠低通滤波,滤除噪声或高频成分)、隔离(信号/电源隔离防止干扰和保护设备)、传感器激励(为需供电的传感器提供激励源,如IEPE传感器的恒流源)等。
- 模数转换器(ADC):核心部件,将连续的模拟信号按设定的采样率和分辨率转换为离散的数字数据。采样率决定可还原的频率范围(需满足奈奎斯特,并结合抗混叠滤波器的设置留余量),分辨率(位数)影响量化步进和可用动态范围。常见 DAQ 使用 16 位或 24 位 ADC;在高动态范围声学/振动前端中(例如 SonoDAQ 这类平台),也可能提供 32-bit 数据输出/处理链路,用于更好地覆盖宽量程与弱信号(以具体实现与指标定义为准)。
- 数据接口与存储:ADC输出的数字数据需通过某种途径送入计算机或存储介质。插卡式DAQ直接通过总线将数据写入PC内存。USB/以太网DAQ则通过驱动将数据传输到PC端软件。SonoDAQ除了可以通过USB/网口/无线实现数据传输外,还内置SD卡实时记录,可在无PC情况下独立保存数据,以防通信中断或满足长时间无人值守采集。
- 计算机与软件:这是数据采集系统的后端,大多数现代DAQ依赖计算机及其软件来完成数据可视化、存储和分析。采集软件用于设置采样参数、控制采集过程、实时显示波形,并对获取的数据进行处理计算和结果输出。不同DAQ厂商提供自家的软件平台(例如OpenTest、NI LabVIEW/DAQmx,DewesoftX,HBK BKConnect等)。软件的易用性和功能直接影响用户工作效率。此外,CRYSOUND的OpenTest支持openDAQ、ASIO等协议,可以实现配置多款数据采集系统。

选型时应该关注哪些性能指标呢?
三个常见选型误区:
- 只看“采样率/位数”,忽略前端噪声、量程匹配、抗混叠滤波与同步指标:结果往往是数据“看起来有”,但分析不稳定、可重复性差。
- 通道数刚好够用、不预留扩展:项目一旦加测点,就只能整套更换或叠加第二套系统,成本和集成工作量都会上来。
- 只关注硬件,不关注软件与工作流:参数配置、实时监看、批量测试、报表导出、协议兼容(openDAQ/ASIO 等)直接决定效率。
应该关注的方面:
- 数据采集的信号类型:在实际选型中,明确信号类型是关键一步:采集声学与振动信号的需求,与测量应力、温度、电压等参数的要求完全不同。而传统采集系统通常只支持部分信号,例如只能测声压和加速度,一旦测试需求扩展到温度等参数,就必须采购第二套系统,不仅增加预算,也带来系统集成和同步的复杂性。而SonoDAQ 采用模块化平台设计,只需插入所需信号类型的采集模块,即可在同一系统中扩展能力,实现多物理量同步测试,真正做到“按需组合、一次到位”。

- 通道数与可扩展性:首先确定需要采集的信号数量,并选择模拟输入通道数足够的采集卡(或支持扩展的系统)。通道数应略有富余,以备将来增加测点。例如需要采集12路信号,最好选择16通道以上的设备。同样重要的是关注系统的可扩展能力:比如SonoDAQ可由多个单元同步扩展到上百甚至上千通道,且保障所有通道之间的采集延时<100ns,适合大型测试;反之,固定通道数的卡在超出时就无法扩充,需要更换设备,带来成本提高。

- 匹配采样率与频率:采样率选型先看待测信号的最高频率/带宽。底线是满足奈奎斯特(采样率 > 2×最高频率),工程上还要给抗混叠滤波器的过渡带留余量,因此很多项目会从 2.5~5× 带宽起步,再根据分析方法(FFT/倍频程/阶次等)微调。比如发动机振动最高 1 kHz,可先选 5.12 kS/s 或更高;语音/声学分析若要覆盖 20 kHz,常见会选 51.2 kS/s 或 96 kS/s。简而言之:以信号频谱为依据,略取富余并结合滤波设置即可满足准确还原要求。

- 测量精度和动态范围:如果应用对弱信号分辨和大动态范围要求高,例如NVH测试往往既要捕捉安静状态下极低噪声又要记录剧烈激励下的高声压,则需高动态范围、高分辨率的DAQ(24位或以上ADC,动态范围>120dB)。又如音频测试关心失真和噪底,希望设备自带噪声远低于被测信号,那就应选择低本底噪声、高信噪比的采集卡,并关注厂商提供的总谐波失真+噪声(THD+N)指标。

- 环境与使用场景限制:想一想DAQ将被使用的环境条件:是在实验室台式机旁,还是在工厂车间、室外现场?若需经常携带出差或在汽车上测试,便携式/坚固型DAQ更合适。对于无法长时间稳定供电的场景,内置电池及电池续航会非常关键。

- 交付、售后支持服务:在提出采购需求后,设备的交付周期也是一个不可忽视的重要因素。如果项目进度紧张,设备交付时间长达两到三个月,可能会直接影响项目的启动和推进。因此,选型时应关注供应商的交期保障能力。此外,售后服务与技术支持同样关键:包括设备使用过程中的培训指导、出现问题时是否能快速响应、是否提供远程或现场协助等;还应关注质保年限、软件升级策略、技术支持响应机制等服务条款。这些因素将直接影响后续系统的稳定运行和项目整体效率。

常见问题(FAQ)
Q:声卡能不能当数据采集卡用?
A:在少量音频信号、对同步/量程/校准要求不高的场景,声卡可以做“能跑起来”的采集。但在工程测试里,常见问题是:无法提供 IEPE 激励、量程与本底噪声不够、通道同步不可控、驱动延迟大且不稳定。需要可重复、可溯源的测试数据时,建议用专业 DAQ。
Q:数据采集卡和示波器有什么区别?
A:示波器更像“电子电路调试工具”,擅长瞬态捕捉和快速排障;DAQ 更像“长期、多通道、可同步的记录与分析系统”,强调通道扩展、同步一致性、长时间稳定采集与数据管理。
Q:采样率到底怎么选?
A:先看信号最高频率/带宽,底线满足奈奎斯特(>2×最高频)。工程上再结合抗混叠滤波器的过渡带和分析方法,通常从 2.5~5× 带宽起步更稳;不确定时,优先保证滤波和动态范围,再做采样率优化。
Q:什么是 IEPE?什么时候需要?
A:IEPE 是给加速度计、测振麦克风等传感器提供恒流激励并在同一根线缆上传输信号的方式。你只要用的是 IEPE 传感器,就需要 DAQ 前端支持 IEPE 激励、电气隔离/接地策略以及合适的量程与带宽。
Q:多通道/多设备同步需要关注什么?
A:重点看三项:统一时钟源(外时钟/PTP/GPS 等)、通道间采样偏差(skew/时延)以及同步触发/对齐策略。对 NVH、阵列测量、结构模态等应用,同步指标往往比单通道指标更关键。
Q:通道数怎么估算更稳?要不要留余量?
A:先把“必须测”的信号类型和测点列清楚,再把转速/触发/温度等辅助量算进去。建议至少预留 20%~30% 余量,或者选支持模块化扩展的平台,避免后期加测点被迫换系统。
如果你想进一步了解兆华电子最新推出的智能声振数据采集系统SonoDAQ 的功能特性、典型应用场景与常见配置方案,可以在 www.crysound.com.cn查看相关资料。也欢迎与兆华电子(CRYSOUND)团队沟通,我们可以基于你的测试信号类型、通道数、采样率/带宽、同步与现场环境等约束,提供演示与选型建议。
阅读更多
SonoDAQ 如何实现纳秒级多设备同步采集?
SonoDAQ:灵活可扩展的声学与振动数据采集系统
