2025-12-30

SonoDAQ外壳漆层硬度测试

在真实的 DAQ 使用场景中,机壳的耐用性与抗划伤能力会直接影响设备寿命和后期维护成本。本文分享我们对 SonoDAQ 顶盖(PC + 碳纤维复合材料)进行的铅笔硬度划伤测试,并与一款典型笔记本电脑外壳做对比。测试结果覆盖 2H 到 5H 的划伤表现,展示了该外壳在日常搬运、放置与手持操作中的耐磨能力,以及表面处理工艺为何能显著提升长期使用的外观保持性。

耐刮性如何影响 DAQ 的实际使用

在选择数据采集前端时,工程师最先关注的往往是参数:采样率、动态范围、同步精度、通道数……但设备真正投入使用几年之后,很多人会发现,外壳的可靠性和耐刮程度,同样直接影响整机寿命和使用体验。

对于声学与振动测试设备来说,这一点尤为明显。SonoDAQ 常见的应用场景包括 NVH 路试、工业现场测试、户外或半户外长期采集等,设备往往需要:

  • 频繁搬运、装车或固定在工装或测试台上;
  • 在实验室桌面、仪器车、工具箱之间来回挪动;
  • 与其它金属设备、螺丝刀、笔记本电脑等长期“近身接触”。

在这样的使用环境下,如果外壳很容易被刮花,不仅影响观感,也可能带来维护和更换成本。因此,我们针对 SonoDAQ 数据采集前端的上壳,做了一次更贴近日常使用场景的铅笔硬度测试,并选取了一台常见笔记本电脑外壳作为对比。

测试步骤

我们本次测试严格按照ISO15184: 2020标准规定的测试方法进行,旨在测试SonoDAQ数据采集前端上壳外表面的UV固化涂层的耐刮性能。

测试对象:

样品描述
A:SonoDAQ数据采集前端上盖板材质:PC+碳纤维,配合内部铝合金框架和防摔角设计
B:某款日常使用的笔记本电脑外壳材质:常见塑料或金属外壳,表面同样经过喷涂或涂层处理

本次测试采用铅笔硬度测试的思路,使用不同硬度的铅笔在外壳表面施加划擦,观察是否出现肉眼可见的划痕。

测试工具:

  • 铅笔硬度计,可随需求增加配重;
  • 铅笔:硬度为2H、3H、4H、5H;

测试方法:

  • 将铅笔45°插入铅笔硬度计中,总配重750g(等同于对漆面施加7.5N的力);
  • 使用不同硬度的铅笔在外壳表面施加划擦3次,观察是否出现肉眼可见的划痕;
  • 尽量保持相近的划擦长度和力度,以保证不同硬度下具有可比性;

观察指标:

  • 是否出现肉眼可见划痕;
  • 表面光泽是否明显变化。

SonoDAQ真实的刮擦结果

根据测试结果,我们观察到数据采集前端外壳在不同硬度铅笔的测试下表现出了不同的耐刮擦能力。同时为了进一步验证数据采集前端外壳的耐用性,我们还对常见的笔记本外壳进行了类似的铅笔硬度测试。笔记本外壳通常采用塑料或金属材质,且其表面也会经过喷涂处理。我们使用了与数据采集卡相同的测试方法:

2H铅笔:

SonoDAQ Pro某笔记本

小结:SonoDAQ 外壳和笔记本外壳表面均未出现明显划痕,肉眼观察基本没有变化。

3H铅笔:

SonoDAQ Pro某笔记本

结论:SonoDAQ 外壳和笔记本外壳表面均未出现明显划痕,肉眼观察基本没有变化。

4H铅笔:

SonoDAQ Pro某笔记本

结论:在 4H 条件下,SonoDAQ 外壳表面依然没有明显可见的划痕;而对比测试的笔记本外壳已经出现了清晰可见的刮痕,基本接近其耐刮擦能力的上限。

5H 铅笔

SonoDAQ Pro

结论:在5H条件下,SonoDAQ外壳表面开始出现轻微刮痕,说明其耐刮擦能力已经接近极限。

需要说明的是,铅笔硬度测试主要用于不同外壳之间耐刮擦能力的相对对比,并不等同于材料的绝对硬度或长期耐磨寿命。但对于评估日常使用场景下“是否容易被刮花”,这种方法非常直观。

如果把铅笔硬度换算成常见使用情况:

  • 大多数钥匙、设备边角、工具的无意刮擦,通常落在 2H~3H 区间;
  • 4H~5H 已经接近更硬、更尖锐,且带有一定刻意用力的刮擦情况。

SonoDAQ 外壳在 4H 条件下仍然不容易留下痕迹,只有在 5H 条件下才出现轻微划伤。这意味着,在正常搬运、装车、安装和日常使用过程中,外壳并不容易被划花。

为什么这个外壳不容易刮花

SonoDAQ 数据采集前端的外壳采用 PC + 碳纤维复合材料,本身具备较好的机械强度和韧性。在此基础上,外壳表面再经过喷涂烤漆工艺,叠加UV固化层,在以下几个方面起到了关键作用:

  • 提升表面硬度,增强抗划伤能力;
  • 提高耐腐蚀性和环境适应能力;
  • 在保证耐用性的同时,兼顾外观质感。

在仪器设备领域,外壳并不是“越硬越好”,而是在耐刮擦、抗冲击、重量和长期可靠性之间取得平衡。从这次测试的结果可以看出,在真实使用环境中,SonoDAQ的外壳足够耐用。

如需进一步了解SonoDAQ的功能特性、应用场景与典型配置,可在www.crysound.com.cn查看相关资料;也欢迎与兆华电子CRYSOUND团队沟通,我们可以根据你的测试需求提供演示与选型建议。

阅读更多

OpenTest ISO 3744 声功率测试流程

在欧盟《机械噪声指令》等法规要求下,从玩具、电动工具到 IT 设备,越来越多产品需要在铭牌或资料中声明声功率级,而不是只说“听起来不吵”。 在笔记本电脑这类典型办公设备上,空闲状态往往只有 30 dB(A) 左右,满载时可能接近 40 dB(A),这些数值就来自按 ISO 3744 等标准做的声功率测试。 声压 vs 声功率 声源辐射的是声功率,我们在麦克风上测到的是声压。声压会随着房间大小、混响、测点距离等条件变化,而声功率是声源自身的“噪声能量”,不随布置和环境改变,因此更适合作为产品噪声的评价指标。 简单说: 声功率是“原因”(源发出的能量,单位 W / dB); 声压是“结果”(听到的声压级,单位 Pa / dB)。 ISO 3744 要做的,就是在“近似自由声场 + 反射平面”的条件下,用一圈麦克风把声源包围起来,通过测得的面上声压级,按规定的修正和换算步骤,得到稳定、可比对的声功率级。 测试对象:一台日常使用的笔记本电脑 假设我们的被测对象是一台 17 英寸的办公笔记本,测试目标是:在不同工况下(空闲、办公负载、满载)测得其 A 计权声功率级,用于: 对比不同散热方案、风扇策略的噪声表现; 为产品说明书或合规认证提供标准化数据; 为声品质工程(例如风扇噪声“是否恼人”)提供基础数据。 测试环境采用半消声室,地面为反射平面,笔记本放置在反射平面上,周围布置若干测量点(可采用半球架或规则布点),整体方案符合 ISO 3744 对测量面和环境的要求。 测量系统:SonoDAQ Pro + OpenTest 声功率模块 硬件上,我们使用SonoDAQ Pro配合测量麦克风,按标准布置在笔记本周围。OpenTest 通过 openDAQ协议与SonoDAQ连接,在通道设置中完成通道选择与灵敏度、采样率等参数设置。 从标准到平台:为什么用 OpenTest 做声功率测试? OpenTest 是 兆华电子CRYSOUND 面向声学与振动测试打造的新一代平台,支持测量、分析、序列三种模式,可覆盖研发实验室和生产线重复测试场景。 在声功率方向,OpenTest 的解决方案基于声压法,完全符合 ISO 3744 工程法,同时覆盖 ISO 3745 精密法和 ISO 3746 简易法,可根据场地条件和精度要求灵活选择测试等级。平台内置声功率专用报告模板,可直接输出符合国际标准的测试报告,避免团队反复维护 Excel。 在硬件层面,OpenTest 通过 openDAQ、ASIO、WASAPI 以及 NI-DAQmx 等接口连接多品牌数据采集设备,对 CRYSOUND SonoDAQ、RME、NI 等硬件统一管理,从几路验证到多通道阵列都可以在一套软件里完成。 三步走:按 ISO 3744 跑通一套标准化声功率流程 第一步:参数配置与环境准备 在 OpenTest 中新建工程后: 在通道设置中勾选将要使用的麦克风通道,设置灵敏度、采样率、频率计权等参数。 切换到 测量 > 声功率,设置测量参数: 采用的测试方法、测量面相关参数; 点位布设; 测量时间; 其他与 ISO 3744 对应的参数。 这一步实质上是把标准条款“落地”为一个可复用的 OpenTest 场景模板。 第二步:先采背景噪声,再采设备运行 按照 ISO 3744,需要在相同测量面上分别测量“设备关闭”和“设备运行”状态下的声压级,以便进行背景修正。 在 OpenTest 中,这对应两次非常清晰的操作: 采集背景噪声点击功能栏中的“背景采集噪声”图标,系统按预设时长采集环境噪声。 在 简易法下,OpenTest 每秒刷新各通道LAeq; 在 工程法、精密法下,以每秒刷新 1/3 倍频程各频点的 LAeq。 采集设备运行时的噪声背景采集完成后,点击“测试”图标,OpenTest 将: 按预设时长采集笔记本运行时的噪声; 每秒刷新实时声压级; 自动保留本次测试的数据集,方便后续回放与对比。 第三步:从多次测量到一份标准化报告 完成多个工况(例如:空闲、典型办公、满载压力测试)后: 在数据集中勾选需要对比的记录,可叠加查看不同工况下的声功率差异; 在数据选择器右上角点击保存图标,可导出对应的波形文件和CSV数据表,供进一步处理或归档; 点击功能栏中的 Report,填写项目与设备信息,选择需要纳入报告的数据集,调整图表与表格后,一键导出 Excel 报告。 报告中将包含测量条件、测量面、频带或 A 计权声功率级、背景修正等关键信息,可直接用于内部评审或法规/客户提交,这与 Dewesoft 声功率方案导出标准化 Excel 报告的思路是一致的。 从一次笔记本测试,到一套可复用的声功率平台 按 ISO 3744 给一台笔记本做声功率测试,只是一个具体案例。更重要的是: 标准化的 OpenTest 场景可以被克隆到打印机、家电、电动工具等产品测试中; 多通道麦克风阵列与 SonoDAQ 等硬件可以在同一平台下复用; 测试流程与报告格式被软件“固化”,便于团队之间交接和长期审计 如果你正在搭建或升级声功率测试能力,可以考虑以 ISO 3744 为骨架,用 OpenTest 把环境、采集、分析和报告串成一条可重复的链路,让每一次声功率测试都清晰可追溯,也更容易从“单次试验”沉淀成“工程资产”。 欢迎访问 www.opentest.com 了解更多 OpenTest 功能与硬件方案,或联系 兆华电子CRYSOUND 团队获取演示与应用支持。

SonoDAQ 如何实现纳秒级多设备同步采集?

在电声与NVH测试里,“时间对齐”往往比“通道数量”和“分辨率”更难搞。 单机几十上百通道做到同步还不算极限,真正棘手的是多台采集主机分布在不同位置、通过网络连接,还要保持纳秒级甚至亚微秒级的同步精度 —— 否则车内声场还原、阵列定位、结构模态等高阶分析都会出现“对不齐”的问题。SonoDAQ的设计目标之一,就是让这种多设备同步变成“理所当然”:接上网线,剩下的都交给系统自动完成,多台设备就像一台设备一样运行。这背后的关键,就是我们围绕 PTP/GPS构建的一整套精密的时间体系。 为什么多设备同步这么难? 在传统架构里,多设备同步常见有几种做法: 依赖操作系统时间 + 软件对齐; 让一台设备输出时钟/触发,其他设备做从机; 使用简单的网络时间同步(如 NTP); 这些方式在几十毫秒、几毫秒级的同步要求下还能凑合,但要做到微秒甚至纳秒级,会遇到几类根本问题: 操作系统不可控的抖动:任务调度、缓存、驱动延迟都会让“时间看上去在跑偏”。 网络延迟与抖动:不同链路、交换机带来的不确定延迟,很难在纯软件层完全补偿。 长时间漂移:即使启动瞬间勉强对齐,只要各机箱内部晶振稍有误差,运行几十分钟到数小时后,时间轴就会越走越“散”。 SonoDAQ的解决思路是:所有时间相关的关键动作都锚定在“统一的硬件时间轴”上。 从网络时间到硬件时间:PTP + PHC 第一步,是让所有 SonoDAQ 设备拥有同一个“世界时间”。 ①PTP / GPS 作为上游时钟 SonoDAQ 支持从网络 PTP(IEEE 1588)或外部 GPS 获得统一的 UTC 时间基准。这个时间先送入板载的 PTP 硬件时钟(PHC, PTP Hardware Clock)作为参考。可以理解为:PTP/GPS 是“世界标准时间”,PHC 是每台采集主机内部的“本地世界时间拷贝”。 ②每 1/128s 的闭环校正 仅仅在启动时对齐一次还不够。SonoDAQ 会以1/128s 周期对本地 PHC 与参考时钟做比较: 计算当前偏差(包括频率偏差和相位偏差); 用小步伐对 PHC 进行纠偏,防止一次性“猛拉”带来跳变; 长时间运行下来,晶振温漂和老化引起的误差被持续压制。 这样,每台 SonoDAQ 的 PHC 都紧紧跟随 PTP/GPS,不会随着时间悄悄漂移。到这里为止,我们已经让所有设备在“纳秒级精度”的硬件时钟上达成一致,这就是后面所有同步动作的“绝对时间底座”。 PLL+10 PPS:把统一时间送进每一块 FPGA 有了统一的 PHC,还要把它变成“看得见、用得上”的硬件信号,让每块 FPGA 都能感受到同一刻时间。 从PHC/1 PPS到10 PPS PTP/GPS 提供的通常是1 PPS(每秒一个脉冲)信号。SonoDAQ通过板载的PLL电路,把这个 1 PPS 进一步整形并倍频,生成稳定的 10 PPS 脉冲,再分发到各个 FPGA。 单机/多机纳秒级:统一时间轴带来的好处 通过上面的多层设计,SonoDAQ 在时间维度上实现了单机内部和多机之间的纳秒级同步。对于工程师来讲,这些技术细节最终会体现成几个非常实在的能力: 整车NVH测试:车内、车外多位置同步采集,加上转速、扭振等转角信号,阶次分析和路径贡献结果更可信。 多点结构模态测试:多台机箱分布在大型结构不同区域,激励与响应时序精确对应,便于做高阶模态和阻尼估计。 端到端延迟测量:利用统一的时间戳,可以测量从激励输出到响应输入的真实系统延迟,方便音频链路调试与补偿。 工程使用体验:用户“无感”的高精度时间系统 虽然上面讲了不少“PTP、PHC、10 PPS”的内部细节,但在实际使用时,工程师不需要关心这些,所有的事情都有SonoDAQ自己完成。 当工程师在软件里把多台设备的数据拖到同一张图上时,看到的已经是一条天然对齐且无缝衔接的统一时间轴——这就是“纳秒级同步技术实现无缝数据采集”的真正含义。 这就是我们设计SonoDAQ的初衷:把时间这件事情做到极致,让工程师只专注于测试方案和数据分析。 欢迎访问 www.opentest.com 了解更多 OpenTest 功能与硬件方案,或联系 兆华电子CRYSOUND 团队获取演示与应用支持。

解锁无限可能:SonoDAQ的灵活扩展能力

在数据采集和测试领域,灵活性是一个决定性因素,尤其是当测试需求快速变化时。SonoDAQ通过其模块化设计和灵活的扩展能力,帮助用户轻松应对从单一设备的简单测试 到大规模、多通道采集的复杂需求。无论是在实验室环境 还是工业现场,SonoDAQ 都能提供高效、精确的解决方案,最大限度地提升系统的适应性和扩展性。 一台设备的轻松测试,多个设备的强大扩展 当测试需求较小时,比如路测或基础振动测试,SonoDAQ Pro 可以通过单台设备轻松满足多通道数的要求。这时,用户只需要一台设备,便可进行高精度数据采集,不仅高效、便捷,还能避免不必要的硬件投资。但随着测试需求的扩大,特别是在需要大量传感器或多通道同步采集的场景中,SonoDAQ提供了灵活的扩展方案。用户可以通过菊花链或星型拓扑连接多个SonoDAQ Pro,从而实现大规模采集。例如,进行整车NVH测试或大型设备的声音与振动测试时,可以根据实际需要增加设备数量,最多支持上百个通道,确保所有设备间的高精度同步。这种灵活扩展的能力让客户无需每次都采购全新的采集系统,只需要通过级联已有的 SonoDAQ Pro设备,就能轻松应对更复杂的测试需求,避免了传统系统中常见的设备冗余和高成本问题。 化整为零,灵活配置满足各种需求 在没有大规模采集需求时,SonoDAQ 依然能够灵活应对。通过其模块化设计,用户可以根据测试需求的变化,轻松实现设备的调整和重组。例如,如果仅需要采集温度信号、应变信号或低通道数据,用户只需选择相应模块并插入机箱,即可快速完成配置,无需重新购买新设备。这种设计使得 SonoDAQ适用于从简单的实验室测试到复杂的现场测试,用户可以按需扩展,无需担心系统的未来可扩展性。无论是基础数据采集还是高阶信号分析,SonoDAQ 都能提供精准、灵活的解决方案,极大提高了测试的效率和成本效益。 模块化设计带来的灵活性 SonoDAQ的模块化设计 是其灵活性的核心。用户可以根据项目需求选择不同的输入模块、输出模块、传感器接口等,并可以根据需要进行随时插拔和升级。无论是需要增加更多的传感器通道还是扩展新的功能模块,都可以通过插拔模块快速实现,完全不影响现有系统的正常运行。这种设计确保了设备的长期可用性,并使得 SonoDAQ 能够适应不断变化的测试需求。 如果后续需求进一步升级,可能需要对更多信号类型进行测试(如温度、压力、应变),SonoDAQ Pro可以通过简单的模块插拔来适应新的测试需求,使得整体系统无需重构,即可继续高效工作。 假设某汽车厂商需要进行整车NVH测试,最初他们只需要4-8个通道进行车内噪声测试,这时,工程师可以选择一台SonoDAQ Pro设备,完成日常的测试任务。当他们需要扩大测试范围,加入更多的传感器(如测量不同部位的振动、应变或温度),他们只需通过级联将多台SonoDAQ Pro设备连接起来,并通过同步技术确保所有设备间的数据一致性,无需额外的采购或配置变更。 随需扩展,轻松应对各种测试挑战 SonoDAQ的灵活扩展能力使其能够从简单的单通道测试,扩展到大规模的多通道数据采集,无论是车载测试、工业监测还是科研应用,都能提供精准的数据采集方案。其模块化设计和灵活的拓扑结构,不仅能满足当前需求,还能在未来不断变化的测试场景中,快速适应并提供可靠的解决方案。选择SonoDAQ,不再局限于固定的硬件配置,而是根据需求灵活调整,确保每次测试都能顺利进行。