2025-12-29

什么是数据采集系统(DAQ)?

本文将系统说明数据采集系统(DAQ)的类型、组成与选型要点:传感器、信号调理、ADC、接口与软件;重点解释采样率、动态范围、抗混叠和多通道同步,并给出通道数预留、量程匹配、本底噪声与软件工作流等实用建议,帮助工程师更快搭建可重复、可追溯的测试方案。

为什么数据采集系统如此重要

温度、声音、振动……这些物理刺激一直在我们周围发生。你可以把人体也理解成一套自带算法的采集系统:眼耳鼻舌身作为传感器负责取样,神经网络负责传输与编码,大脑把多路信息融合分析后做出决策,身体再执行动作并根据结果调整,循环往复。

工程世界要理解和优化设备,也离不开同样的过程。温度、声压、振动、应力、电压等物理量,是我们获取“客观信息”的入口;它们不仅要测得准,还要能反复复现、长期记录。更关键的是,在高温、高应力、高声压或大电流环境中,直接暴露测量可能带来安全隐患。数据采集系统的价值,就是把这些信号以更可控、更安全的方式转化为可存储、可分析的数据。

现代工程和科研几乎离不开数据采集系统,它的重要性在于它让测试和分析建立在客观准确的基础之上。在没有DAQ之前,很多产品测试依赖人工经验和主观判断:例如早年汽车悬挂的测试,工程师往往根据试车手的感受来评价悬挂性能,这种方法主观且难以量化。而有了数据采集系统后,就可以通过传感器获取客观的量化数据,用数字说话,避免了人为偏差。数据采集系统能够重复地记录各种工况下的参数,使得不同方案可以直接对比,以数学和统计方法分析差异,并通过图表清晰地呈现结果。

可以说,在当今从汽车、飞机到电子设备的开发过程中,没有数据采集就无法高效地验证产品性能、安全性和可靠性。例如在耐久性试验中,DAQ记录了载荷和应变的循环数据,用于疲劳寿命分析;在噪声控制中,通过多点同步采集振动和声压,找到噪声源及传播路径。这些都是数据采集带来的量化分析能力,为工程改进提供了科学依据。

数据采集系统的应用也深入到各个领域:

  • 汽车NVH和机械振动测试:用于采集车身振动、噪声、发动机动平衡、结构模态等数据,帮助工程师改进车辆舒适性。
  • 电声和音频测试:在扬声器、麦克风、耳机等音频器件的研发和生产中,DAQ用于测量频率响应、声压级、失真度等,确保这些器件的声学性能。
  • 工业自动化与监测DAQ广泛用于工厂过程监控、设备健康监测和工业控制。例如采集温度、压力、流量、扭矩等传感器数据,实现对生产过程的实时监控和异常报警,通常要求DAQ长时间可靠运行,具备高稳定性和抗干扰能力。
  • 科研实验与教育:从物理、生物实验到地震监测、气象观测,数据采集系统都是科研人员获取原始数据的基本工具。它让实验数据记录自动化、数字化,方便后续处理。

在各行各业对质量和性能要求日益提高的今天,数据采集系统已经成为不可或缺的“眼睛”和“耳朵”,赋予工程师洞察复杂现象的能力。

采集前端的主要类型

根据接口形式、集成程度和应用场景的不同,数据采集卡衍生出多种类型。以下是几种常见的采集卡/采集系统类型:

类型形态/接口主要优点限制典型场景
插入式采集卡PCIe / PXI / PXIe低延迟;高吞吐;实时性强不便携;依赖机箱/工控机;扩展受平台限制固定实验室;机架系统;高带宽采集
外置式采集设备USB / Ethernet / Thunderbolt便携;部署快;适合笔记本带宽/延迟受接口影响;驱动稳定性关键;供电/线缆要注意外场测试;移动测量;通用采集
一体化记录仪内置电池/存储/屏幕(可独立)开箱即用;现场操作方便;离线记录省心通道/算法通常有限;扩展能力弱;后处理依赖导出巡检;快速诊断;长时间离线记录
模块化分布式系统主机 + 模块;网络扩展(可同步)信号类型按需组合;通道易扩展;同步能力强规划更重要:同步/时钟/布线;规模越大越依赖系统设计多物理量同步;大规模通道;跨区域测试
  • 插入式采集卡(内置式):指安装在计算机内部的板卡,典型接口有PCI、PCIe、PXI(CompactPCI)等。这类卡直接插入PC机箱总线槽,由PC供电和控制,实时性高且带宽大,适合台式机/工控机环境下的大数据吞吐应用。但其便携性较差,通常用于固定实验室或机架系统中。
  • 外置式采集设备(外置模块):通过USB、以太网、Thunderbolt等接口与电脑连接的采集硬件。常见的是USB数据采集卡,体积小巧、即插即用,非常适合笔记本电脑和现场测试。以太网/网络型DAQ则可实现远距离传输和多设备连接,外置设备一般有独立机壳,便携性好,但高端型号在实时性能上可能略受接口带宽限制(USB延迟较PCIe稍高)。
  • 便携式/一体化数据记录仪:这类将数据采集硬件与嵌入式电脑、显示屏、存储等整合为一体,形成独立工作的仪器。特点是现场使用方便,无须外接PC即可完成数据的采集、记录和初步分析。例如带平板屏幕的便携式振动采集分析仪、手持式多通道记录仪等。这种设备通常针对特定应用优化了软件,开箱即用,适合需要移动测量或现场快速诊断的场合。
  • 模块化分布式采集系统平台:由多个采集模块和主控制器/机箱构成,可灵活组合扩展通道数,灵活搭配不同的功能模块。每个模块负责一定类型或数量的信号通道,通过高速同步网络(如EtherCAT、以太网/PTP等)连接到主控制单元或直接连入计算机。这种架构具备极高的扩展性和分布式测量能力,可将模块放置在被测物附近减少传感器布线。例如CRYSOUND的SonoDAQ这类模块化架构,每台主机支持多个模块并可通过菊花链/星型网络扩展到上千通道。模块化系统非常适合大规模、跨区域的同步测量需求。

数据采集系统的组成

一个完整的数据采集系统通常由以下几个关键部分组成:

  • 传感器:负责将物理现象转换为电信号的前端。例如,将声压转换为电压的麦克风、将振动加速度转换为电荷/电压的加速度计,将力转换为电阻变化的应变片,以及测温热电偶等;
  • 信号调理:介于传感器和采集卡ADC之间,用于调整和优化信号的电子模块。其功能包括:放大/衰减(增大或减小信号幅度到ADC量程)、滤波(如抗混叠低通滤波,滤除噪声或高频成分)、隔离(信号/电源隔离防止干扰和保护设备)、传感器激励(为需供电的传感器提供激励源,如IEPE传感器的恒流源)等。
  • 模数转换器(ADC):核心部件,将连续的模拟信号按设定的采样率和分辨率转换为离散的数字数据。采样率决定可还原的频率范围(需满足奈奎斯特,并结合抗混叠滤波器的设置留余量),分辨率(位数)影响量化步进和可用动态范围。常见 DAQ 使用 16 位或 24 位 ADC;在高动态范围声学/振动前端中(例如 SonoDAQ 这类平台),也可能提供 32-bit 数据输出/处理链路,用于更好地覆盖宽量程与弱信号(以具体实现与指标定义为准)。
  • 数据接口与存储:ADC输出的数字数据需通过某种途径送入计算机或存储介质。插卡式DAQ直接通过总线将数据写入PC内存。USB/以太网DAQ则通过驱动将数据传输到PC端软件。SonoDAQ除了可以通过USB/网口/无线实现数据传输外,还内置SD卡实时记录,可在无PC情况下独立保存数据,以防通信中断或满足长时间无人值守采集。
  • 计算机与软件:这是数据采集系统的后端,大多数现代DAQ依赖计算机及其软件来完成数据可视化、存储和分析。采集软件用于设置采样参数、控制采集过程、实时显示波形,并对获取的数据进行处理计算和结果输出。不同DAQ厂商提供自家的软件平台(例如OpenTest、NI LabVIEW/DAQmx,DewesoftX,HBK BKConnect等)。软件的易用性和功能直接影响用户工作效率。此外,CRYSOUND的OpenTest支持openDAQ、ASIO等协议,可以实现配置多款数据采集系统。

选型时应该关注哪些性能指标呢?

三个常见选型误区:

  • 只看“采样率/位数”,忽略前端噪声、量程匹配、抗混叠滤波与同步指标:结果往往是数据“看起来有”,但分析不稳定、可重复性差。
  • 通道数刚好够用、不预留扩展:项目一旦加测点,就只能整套更换或叠加第二套系统,成本和集成工作量都会上来。
  • 只关注硬件,不关注软件与工作流:参数配置、实时监看、批量测试、报表导出、协议兼容(openDAQ/ASIO 等)直接决定效率。

应该关注的方面:

  • 数据采集的信号类型:在实际选型中,明确信号类型是关键一步:采集声学与振动信号的需求,与测量应力、温度、电压等参数的要求完全不同。而传统采集系统通常只支持部分信号,例如只能测声压和加速度,一旦测试需求扩展到温度等参数,就必须采购第二套系统,不仅增加预算,也带来系统集成和同步的复杂性。而SonoDAQ 采用模块化平台设计,只需插入所需信号类型的采集模块,即可在同一系统中扩展能力,实现多物理量同步测试,真正做到“按需组合、一次到位”。
  • 通道数与可扩展性:首先确定需要采集的信号数量,并选择模拟输入通道数足够的采集卡(或支持扩展的系统)。通道数应略有富余,以备将来增加测点。例如需要采集12路信号,最好选择16通道以上的设备。同样重要的是关注系统的可扩展能力:比如SonoDAQ可由多个单元同步扩展到上百甚至上千通道,且保障所有通道之间的采集延时<100ns,适合大型测试;反之,固定通道数的卡在超出时就无法扩充,需要更换设备,带来成本提高。
  • 匹配采样率与频率:采样率选型先看待测信号的最高频率/带宽。底线是满足奈奎斯特(采样率 > 2×最高频率),工程上还要给抗混叠滤波器的过渡带留余量,因此很多项目会从 2.5~5× 带宽起步,再根据分析方法(FFT/倍频程/阶次等)微调。比如发动机振动最高 1 kHz,可先选 5.12 kS/s 或更高;语音/声学分析若要覆盖 20 kHz,常见会选 51.2 kS/s 或 96 kS/s。简而言之:以信号频谱为依据,略取富余并结合滤波设置即可满足准确还原要求。
  • 测量精度和动态范围:如果应用对弱信号分辨和大动态范围要求高,例如NVH测试往往既要捕捉安静状态下极低噪声又要记录剧烈激励下的高声压,则需高动态范围、高分辨率的DAQ(24位或以上ADC,动态范围>120dB)。又如音频测试关心失真和噪底,希望设备自带噪声远低于被测信号,那就应选择低本底噪声、高信噪比的采集卡,并关注厂商提供的总谐波失真+噪声(THD+N)指标。
  • 环境与使用场景限制:想一想DAQ将被使用的环境条件:是在实验室台式机旁,还是在工厂车间、室外现场?若需经常携带出差或在汽车上测试,便携式/坚固型DAQ更合适。对于无法长时间稳定供电的场景,内置电池及电池续航会非常关键。
  • 交付、售后支持服务:在提出采购需求后,设备的交付周期也是一个不可忽视的重要因素。如果项目进度紧张,设备交付时间长达两到三个月,可能会直接影响项目的启动和推进。因此,选型时应关注供应商的交期保障能力。此外,售后服务与技术支持同样关键:包括设备使用过程中的培训指导、出现问题时是否能快速响应、是否提供远程或现场协助等;还应关注质保年限、软件升级策略、技术支持响应机制等服务条款。这些因素将直接影响后续系统的稳定运行和项目整体效率。

常见问题(FAQ)

Q:声卡能不能当数据采集卡用?

A:在少量音频信号、对同步/量程/校准要求不高的场景,声卡可以做“能跑起来”的采集。但在工程测试里,常见问题是:无法提供 IEPE 激励、量程与本底噪声不够、通道同步不可控、驱动延迟大且不稳定。需要可重复、可溯源的测试数据时,建议用专业 DAQ。

Q:数据采集卡和示波器有什么区别?

A:示波器更像“电子电路调试工具”,擅长瞬态捕捉和快速排障;DAQ 更像“长期、多通道、可同步的记录与分析系统”,强调通道扩展、同步一致性、长时间稳定采集与数据管理。

Q:采样率到底怎么选?

A:先看信号最高频率/带宽,底线满足奈奎斯特(>2×最高频)。工程上再结合抗混叠滤波器的过渡带和分析方法,通常从 2.5~5× 带宽起步更稳;不确定时,优先保证滤波和动态范围,再做采样率优化。

Q:什么是 IEPE?什么时候需要?

A:IEPE 是给加速度计、测振麦克风等传感器提供恒流激励并在同一根线缆上传输信号的方式。你只要用的是 IEPE 传感器,就需要 DAQ 前端支持 IEPE 激励、电气隔离/接地策略以及合适的量程与带宽。

Q:多通道/多设备同步需要关注什么?

A:重点看三项:统一时钟源(外时钟/PTP/GPS 等)、通道间采样偏差(skew/时延)以及同步触发/对齐策略。对 NVH、阵列测量、结构模态等应用,同步指标往往比单通道指标更关键。

Q:通道数怎么估算更稳?要不要留余量?

A:先把“必须测”的信号类型和测点列清楚,再把转速/触发/温度等辅助量算进去。建议至少预留 20%~30% 余量,或者选支持模块化扩展的平台,避免后期加测点被迫换系统。

如果你想进一步了解兆华电子最新推出的智能声振数据采集系统SonoDAQ 的功能特性、典型应用场景与常见配置方案,可以在 www.crysound.com.cn查看相关资料。也欢迎与兆华电子(CRYSOUND)团队沟通,我们可以基于你的测试信号类型、通道数、采样率/带宽、同步与现场环境等约束,提供演示与选型建议。

阅读更多

SonoDAQ 如何实现纳秒级多设备同步采集?

在电声与NVH测试里,“时间对齐”往往比“通道数量”和“分辨率”更难搞。 单机几十上百通道做到同步还不算极限,真正棘手的是多台采集主机分布在不同位置、通过网络连接,还要保持纳秒级甚至亚微秒级的同步精度 —— 否则车内声场还原、阵列定位、结构模态等高阶分析都会出现“对不齐”的问题。SonoDAQ的设计目标之一,就是让这种多设备同步变成“理所当然”:接上网线,剩下的都交给系统自动完成,多台设备就像一台设备一样运行。这背后的关键,就是我们围绕 PTP/GPS构建的一整套精密的时间体系。 为什么多设备同步这么难? 在传统架构里,多设备同步常见有几种做法: 依赖操作系统时间 + 软件对齐; 让一台设备输出时钟/触发,其他设备做从机; 使用简单的网络时间同步(如 NTP); 这些方式在几十毫秒、几毫秒级的同步要求下还能凑合,但要做到微秒甚至纳秒级,会遇到几类根本问题: 操作系统不可控的抖动:任务调度、缓存、驱动延迟都会让“时间看上去在跑偏”。 网络延迟与抖动:不同链路、交换机带来的不确定延迟,很难在纯软件层完全补偿。 长时间漂移:即使启动瞬间勉强对齐,只要各机箱内部晶振稍有误差,运行几十分钟到数小时后,时间轴就会越走越“散”。 SonoDAQ的解决思路是:所有时间相关的关键动作都锚定在“统一的硬件时间轴”上。 从网络时间到硬件时间:PTP + PHC 第一步,是让所有 SonoDAQ 设备拥有同一个“世界时间”。 ①PTP / GPS 作为上游时钟 SonoDAQ 支持从网络 PTP(IEEE 1588)或外部 GPS 获得统一的 UTC 时间基准。这个时间先送入板载的 PTP 硬件时钟(PHC, PTP Hardware Clock)作为参考。可以理解为:PTP/GPS 是“世界标准时间”,PHC 是每台采集主机内部的“本地世界时间拷贝”。 ②每 1/128s 的闭环校正 仅仅在启动时对齐一次还不够。SonoDAQ 会以1/128s 周期对本地 PHC 与参考时钟做比较: 计算当前偏差(包括频率偏差和相位偏差); 用小步伐对 PHC 进行纠偏,防止一次性“猛拉”带来跳变; 长时间运行下来,晶振温漂和老化引起的误差被持续压制。 这样,每台 SonoDAQ 的 PHC 都紧紧跟随 PTP/GPS,不会随着时间悄悄漂移。到这里为止,我们已经让所有设备在“纳秒级精度”的硬件时钟上达成一致,这就是后面所有同步动作的“绝对时间底座”。 PLL+10 PPS:把统一时间送进每一块 FPGA 有了统一的 PHC,还要把它变成“看得见、用得上”的硬件信号,让每块 FPGA 都能感受到同一刻时间。 从PHC/1 PPS到10 PPS PTP/GPS 提供的通常是1 PPS(每秒一个脉冲)信号。SonoDAQ通过板载的PLL电路,把这个 1 PPS 进一步整形并倍频,生成稳定的 10 PPS 脉冲,再分发到各个 FPGA。 单机/多机纳秒级:统一时间轴带来的好处 通过上面的多层设计,SonoDAQ 在时间维度上实现了单机内部和多机之间的纳秒级同步。对于工程师来讲,这些技术细节最终会体现成几个非常实在的能力: 整车NVH测试:车内、车外多位置同步采集,加上转速、扭振等转角信号,阶次分析和路径贡献结果更可信。 多点结构模态测试:多台机箱分布在大型结构不同区域,激励与响应时序精确对应,便于做高阶模态和阻尼估计。 端到端延迟测量:利用统一的时间戳,可以测量从激励输出到响应输入的真实系统延迟,方便音频链路调试与补偿。 工程使用体验:用户“无感”的高精度时间系统 虽然上面讲了不少“PTP、PHC、10 PPS”的内部细节,但在实际使用时,工程师不需要关心这些,所有的事情都有SonoDAQ自己完成。 当工程师在软件里把多台设备的数据拖到同一张图上时,看到的已经是一条天然对齐且无缝衔接的统一时间轴——这就是“纳秒级同步技术实现无缝数据采集”的真正含义。 这就是我们设计SonoDAQ的初衷:把时间这件事情做到极致,让工程师只专注于测试方案和数据分析。 欢迎访问 www.opentest.com 了解更多 OpenTest 功能与硬件方案,或联系 兆华电子CRYSOUND 团队获取演示与应用支持。

SonoDAQ:灵活可扩展的声学与振动数据采集系统

SonoDAQ 是新一代的高性能数据采集系统,专为声学与振动测试设计,采用模块化架构,让数据采集工作更高效、更精准。从工业现场到实验室测量,SonoDAQ 都能满足高精度数据采集需求,并为多通道同步采集提供无缝支持。 模块化设计,灵活应对各种应用 SonoDAQ 采用全新的模块化设计,能够根据不同的需求灵活配置。无论您是需要4通道的基础配置,还是需要扩展到数百通道的大规模系统,SonoDAQ 都能轻松应对。您可以根据项目需求自由选择模块,随时扩展系统,避免不必要的成本支出。这种灵活性非常适合动态变化的测试环境。 高精度同步,确保测试结果的准确性 在声学与振动测试中,数据的精度至关重要。SonoDAQ 配备 32-bit ADC 和最高204.8 kHz的采样率,并通过 PTP(IEEE 1588) 和 GPS同步 保证各个通道之间的时间同步误差小于 100ns。这一同步精度使得您可以在多通道、大规模分布式采集系统中,依然得到可靠且一致的数据结果。 多种网络拓扑结构,灵活扩展采集系统 SonoDAQ 的另一个亮点是其强大的分布式采集能力,通过 菊花链、星型拓扑等多种网络连接方式,可以方便地将多台设备集成到同一采集系统中。借助 PTP(精密时间协议) 和 GPS同步技术,无论是小规模的实验室测试还是大规模的现场数据采集,SonoDAQ 都能提供纳秒级同步,确保不同设备之间的数据同步和一致性。您可以根据实际需求选择不同的系统拓扑结构,灵活应对各种复杂测试场景。 创新的结构设计,现场应用的理想选择 SonoDAQ 的框架采用 5000t 铝挤压工艺,结合 碳纤维增强塑料,不仅提供卓越的坚固性,还大幅降低了设备重量。此外,SonoDAQ支持PoE供电、电池热插拔,让设备在恶劣环境下依然保持高效运行,满足长时间连续采集的需求。无论是在实验室,还是在工业现场,SonoDAQ 都能提供稳定的工作表现。 丰富的信号兼容,拓展您的测试边界 SonoDAQ 支持多种信号输入,包括 IEPE传感器、CAN总线、数字I/O等多种接口协议。这让它能够适应更广泛的测试需求,从振动监测到电机噪声分析,都能轻松实现。无论您是进行基础数据采集还是高阶信号分析,SonoDAQ 都能为您提供所需的精度和灵活性。 提升测试效率,让数据采集更简单 借助SonoDAQ 配套的 OpenTest 软件,您可以实时监测、分析采集到的信号。OpenTest 提供直观的界面和强大的数据分析功能,帮助您更轻松地处理和呈现测试数据。不仅如此,SonoDAQ 还支持 ASIO、OpenDAQ 等开放协议,方便您与其他测试工具或软件的集成。 SonoDAQ 将帮助您简化测试流程,提升数据采集的效率,并在各种复杂的测试环境中提供精确的测量。无论是进行噪声测试、振动分析,还是复杂的声学功率测量,SonoDAQ 都是您理想的选择。今天,选择 SonoDAQ,为您的测试工作带来革命性的改变! SonoDAQ准备好革新您的测试流程——不要再等待,赶紧体验它的强大功能吧!立即联系我们:info@crysound.com!

三步走快速上手OpenTest,采集、分析到报告,一气呵成

在声学与振动测试领域,工程团队往往要在多套软件和不同品牌数据采集设备之间来回切换,接口各异、流程割裂,新人往往需要花费大量时间熟悉工具,才能真正进入工程问题本身。OpenTest 由 兆华电子CRYSOUND 开发,是一款面向工程师、研究人员和制造企业的下一代声学与 NVH 测试平台,以「开放生态、AI 驱动、高度兼容」为核心设计原则,帮助用户在一套软件里完成从采集到报告的完整闭环。 OpenTest 支持 Measure、Analysis、Sequence 三种工作模式,覆盖实验室验证与生产线重复测试场景;核心功能包括实时分析、FFT 和 倍频程分析、扫频分析、声功率测试、声级计以及声品质分析等,并内置通用报告和符合国际标准的各类报告模板。 在硬件层面,OpenTest 通过 openDAQ、ASIO、WASAPI 等主流音频协议以及私有接口接入多品牌数据采集设备,可对 CRYSOUND SonoDAQ、RME、NI 等硬件统一管理;在软件层面,平台提供 Python、MATLAB、LabVIEW、C++ 等插件化开发能力,方便团队将自有算法和行业应用封装为插件,扩展到统一平台中。 从采集到报告:三步走快速跑通流程 1. 安装与基础连接——让信号先「进来」 从官方网站 www.opentest.com 下载最新的安装包,完成安装 将设备与PC进行连接,初次体验可以直接使用电脑自带声卡完成测试 在设置模块中扫描设备,选择需要加入使用的设备和通道,即可完成基础连接 2.使用实时分析完成基础测试——先看得见,再谈优化 在通道管理中勾选需要使用的输入/输出通道,设置灵敏度、采样率、增益等参数 系统将自动开启Monitor,可同时看到实时波形、FFT 频谱以及有效值、THD等关键指标 如有需要,可启用内置信号源输出激励信号,并使用录音功能进行长时间采集 3.在测量模块中完成深度分析与报告——从数据走向结论 切换到测量模块,可以使用FFT分析、倍频程分析、扫频分析、声功率测试、声级计、声品质等进阶功能,满足更深入的分析需求 通过数据集功能对历史记录进行回溯与叠加对比,观察不同样件、工况或调试方案下的差异 波形、数据可随时导出,使用报告功能可一键生成测试报告,实现从测试到交付的闭环 谁适合使用 OpenTest? 初入行的声学与振动测试工程师,希望用一套工具快速建立完整测试流程 需要管理多品牌硬件、希望统一到单一平台下的实验室和企业团队 在汽车 NVH、消费电子、工业诊断等领域追求高通道数、自动化和 AI 分析能力的项目团队 无论你处于测试体系搭建的哪个阶段,OpenTest 都可以从免费入门版本开始,帮助你以更低门槛拥抱开放生态和智能分析能力。欢迎访问 www.opentest.com 了解更多功能详情、硬件兼容列表及版本方案,并预约演示,与 兆华电子CRYSOUND 一起构建高效、开放、可持续演进的声学与振动测试平台。