2025-12-19
AR 眼镜产线测试升级:音频与 VPU 多工站解决方案
随着AR 眼镜市场由概念验证阶段迈向商业化落地,产品在音频与触觉交互等方面的能力不断增强,产线测试需求也随之升级。围绕音频与 VPU 等关键模块,AR 眼镜产线测试正从单一功能验证,演进为面向真实佩戴体验的一致性约束。本文结合实际量产项目经验,介绍不同工站形态下的音频与 VPU 测试方案,重点探讨自由场音频测试、VPU 产线部署及治具设计等关键问题,为 AR 眼镜规模化生产提供参考。
一、AR 眼镜市场加速扩展与产线测试新趋势
随着智能眼镜产品逐步走向成熟,其功能边界正在发生明显变化。根据多方行业报告,AR 眼镜的出货量和投资规模持续增长,市场重心正由概念验证阶段逐步迈向商业化落地阶段。在这一过程中,以 Meta 等厂商推动的产品为代表,智能眼镜已开始承接语音交互、通话、信息提示、录音等能力,在部分使用场景中,对手机和耳机形成补充,并承担部分原有功能。这使眼镜从低频使用的概念产品,逐步演变为高频佩戴的交互终端。
功能角色的转变,也直接影响到产品的技术重心。音频能力成为智能眼镜体验的核心组成部分,决定了语音交互和通话质量;同时,振动与触觉反馈等能力开始被引入,用于增强交互确认和使用感知。随着这些功能在量产产品中的普及,AR 眼镜产线测试的关注点不再局限于基础功能是否可用,而是需要同时面对音频与 VPU 等多项关键能力并行验证的新需求,这也为产线测试方案的升级提出了新的要求。


二、音频测试方案:适配不同工站的产线实现
音频作为 AR 眼镜中最直接影响用户体验的功能之一,其产线测试需要兼顾准确性、一致性与生产效率。在多工站产线环境中,音频测试往往根据装配阶段的不同,被分布在多个工站完成。
在镜腿或镜框工站,音频测试更多聚焦于局部麦克风或扬声器的基本性能验证,确保关键部件在装配阶段即满足要求,避免在整机段拆机造成更大的损失;而在整机工站,测试重点则转向整体音频表现以及系统层面的协同效果。不同工站虽关注点不同,但在治具定位、声学环境控制以及测试流程设计上,仍需要保持一致的方案逻辑。
CRYSOUND AR眼镜音频测试方案围绕这一需求,通过统一的测试架构设计,使音频测试能够在不同工站下灵活部署,并保持测试结果的稳定性和一致性。综合可分为以下两类,满足不同产线对设备外观及UPH的需求。
2.1抽屉单箱一拖一


- 方便适配自动化
- OP站立操作,便于取放
- 可同时测试SPK、MIC(气密),支持多MIC场景
- 左右SPK串行测试,多MIC可并行测试
- 支持多种通信方式:经典蓝牙、USB ADB、WIFI ADB
- 平均CT:100s,UPH:36
2.2贝壳双箱一拖二


- 双箱并行测试,提高效率
- 符合坐姿操作人体工学设计要求
- 可同时测试SPK、MIC(气密),支持多MIC场景
- 左右SPK串行测试(单箱),多MIC可并行测试
- 支持多种通信方式:经典蓝牙、USB ADB、WIFI ADB
- 平均CT:150s,UPH:70
2.3眼镜SPK EQ:从压力场到自由场的变化
在传统耳机产品中,SPK EQ 通常建立在相对稳定的压力场条件下,耳道耦合和佩戴方式对声学环境的影响较为可控。而在 AR / 智能眼镜中,SPK 多采用开放式结构,发声单元与耳朵之间不存在封闭腔体,其声学表现更接近自由场特性。这一差异使得眼镜 SPK 的频响对出声方向、结构反射以及佩戴姿态更加敏感,也决定了其 EQ 策略无法简单沿用耳机产品的经验。
在产线测试与调校过程中,眼镜 SPK EQ 需要基于自由场测试条件进行评估和验证。由于开放式发声结构下,SPK 的频响更容易受到结构反射、装配公差以及佩戴姿态变化的影响,单纯依赖硬件一致性难以保证不同产品之间的听感稳定。通过引入 EQ,可以在不改变结构设计的前提下,对这些系统性偏差进行收敛与补偿,从而提升量产阶段音频表现的一致性。测试方案的重点,并非追求理想化的听音效果,而是通过稳定、可重复的自由场测试形态,捕捉不同结构与装配状态下的真实声学差异,从而为 EQ 参数的确认与验证提供可靠依据。
CRYSOUND支持定制EQ算法,在某X项目中,整机测试站SPK在自由场测试条件下引入了 SPK EQ 校准,其量产阶段的表现得到了项目方的认可,也验证了该方案在眼镜产品中的适用性和现实意义。

三、VPU 测试方案:面向AR/智能眼镜的新测试需求
3.1 AR 眼镜为什么要加入 VPU(振动单元 / 振动麦克风)
随着 AR / 智能眼镜逐步承接语音交互、通话、信息提示等功能,仅依赖声音反馈已经不够。在嘈杂环境、隐私场景或弱音提示下,用户需要一种不打扰他人、但足够明确的反馈方式,这正是 VPU 被引入的重要原因。
相比传统耳机,眼镜并非始终紧贴耳道,声音提示容易被环境噪声掩盖;而通过振动或触觉反馈,系统可以在不增加音量、不依赖屏幕的情况下,向用户传递状态确认、交互响应或提示信息。因此,VPU 成为智能眼镜在交互层面补充甚至替代部分音频反馈的重要手段。
3.2 VPU 在 AR 眼镜中的主要作用
在当前量产的智能眼镜设计中,VPU 通常承担以下几类功能:
- 交互确认反馈:如语音唤醒成功、指令识别完成、拍照或录音开始/结束等状态提示
- 静默提示:在不适合语音播报的场景下,通过振动向用户传递信息
- 体验增强:与音频提示配合,提升交互的确定性和沉浸感
这些功能使VPU 不再是“可选配置”,而是逐步成为智能眼镜交互体验中的一部分关键能力。
3.3 VPU 在 AR 眼镜中的典型位置(为什么在鼻梁 / 鼻托)
在结构设计上,VPU 通常布置在鼻梁或鼻托附近,原因主要有三点:
- 贴近人体敏感区域:鼻梁位置对微小振动感知明显,反馈效率高
- 结构稳定、耦合良好:相比镜腿,鼻梁区域与面部接触更稳定,振动传递更一致
- 不影响音频器件布局:避免与扬声器、麦克风在镜腿区域产生结构与测试干扰
因此,在产线测试中,VPU 往往作为独立测试对象,需要在镜框或整机阶段进行专门验证。
3.4 VPU 测试方案在产线中的实现与一致性控制
结合前述 VPU 在 AR 眼镜中的功能定位与结构特点,在实际量产项目中,VPU 测试通常根据产品形态与装配进度,被安排在镜框或整机工站,部分场景下也会前移至音频相关工站之前进行,以便尽早识别潜在的 VPU 不良,避免问题在后续装配阶段被放大。
需要说明的是,产线测试环境与实验室验证环境存在本质差异。在实验室阶段,VPU 往往以单体形式进行功能或性能验证,测试形态相对简化,通常不依赖治具固定,可在较高激励条件(1g)下完成性能评估;而在产线环境中,测试对象已处于整机或镜框装配状态,其振动激励条件需要贴近产品在真实佩戴场景下的物理边界,而不能简单沿用实验室的极限测试方法。在实际项目中,产线 VPU 测试通常在 0.1g–0.2g、100–2kHz 的激励范围下进行,用于在贴近真实佩戴场景的条件下,对 VPU 性能一致性进行验证。
基于上述需求,AR 眼镜 VPU 产线测试方案以 CRY6151B电声分析仪作为测试与分析平台,通过振动台提供稳定的振动激励,由产品 VPU 与参考加速度传感器同步采集振动响应信号,并在软件端对 VPU 的频响(FR)与失真(THD)等关键性能进行分析与判定。该测试架构能够在产线条件下兼顾测试有效性与节拍要求,满足不同工站对 VPU 测试的部署需求。
相较于音频测试,VPU 对测试形态与治具设计更加敏感,容错空间更小,一致性控制难度更高。基于多个项目的实施经验,治具设计需充分考虑不同产品在鼻梁、鼻托等位置的结构差异,优先选择有利于振动传导的材料与接触方式,并通过规则化的治具形态设计,使治具重心与振动台工作平面保持一致,从结构层面减少额外变量的引入。通过上述设计原则,可在产线环境下提升 VPU 测试结果的稳定性与可重复性,为产品的 VPU 能力验证提供可靠支撑。


四、结语:从功能测试到体验约束
在 AR 眼镜产线中,测试的角色正在发生变化。过去,音频或振动模块更多被视为独立功能,其测试目标是确认是否“可用”;而在当前产品形态下,这些模块已经直接影响语音交互、佩戴感受和整体体验,其测试结果开始对整机表现形成前置约束。
以音频与 VPU 为例,它们不再只是单独验证性能指标,而是共同参与到用户体验的一致性控制中。音频表现、振动反馈与结构装配之间的相互影响,使得产线测试需要提前发现可能影响体验的问题,而不仅是在终检阶段进行筛选。这种变化,正在推动测试方案从“功能通过”向“体验可控”转变。
在这一趋势下,产线测试方案的重点不再只是测试项本身,而是如何在产线阶段建立对关键体验能力的约束机制。对于 AR 眼镜这类高度集成的产品而言,这种变化将成为未来测试方案设计中不可回避的一部分。
如需了解更多AR眼镜音频或VPU产线测试方案,欢迎通过官网https://www.crysound.com.cn/或通过邮箱info@crysound.com联系我们。
